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In Ref. I Chapman considered the problem of laminar mixing at

constant pressure for a fluid with Prandtl number one, and a viscosity

power law of the form p -- e. Because of the recent interest in the

fluid-mechanic description of hypersonic wakes, mixing problems are

being again investigated intensely both experimentally and theoreti-

cally. As an example, Ref. 2 extends Ref. I by assuming a Blasius

starting velocity profile rather than a uniform one. (A uniform pro-

file was assumed by Chapman as a necessity imposed for the conserva-

tion of similarity).

It will be shown in this brief note that the velocity along the

dividing streamline can be determined in a simple manner by approxima-

ting the integral solution of Ref. 1. The effect of finite base rad-

ius (or Reynolds number) is also investigated using this approximate

solution.

In terms of the stream function T, the differential equation of

motion is:

Sdu + d u0
2 d< dC (gd~ V 0()

where

C = /V/ii8, g() - uT "l

T T -1- TM~u 2  +(To -Tu

T and u are nondimensional with respect to the free-stream, the sub-

scripts d and o refer to the "dead water" region and stagnation point,
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and M is the free-stream Mach number. Chapman's boundary conditions

are:

At C=: u=l, C=-M: u = 0 (2)

The velocity at the dividing streamline, uD, is given after a

formal solution of Eq. (1) as follows:

0

1 FdC

UD 0 o + (3)

SFdC + 5 FdC
-CQ 0

where

F(C) e { (4)g

We make the observation that in the expression for the integrand

F, the contribution of the exponential part in the numerator is stronger

than the denominator for increasing g (or C). Hence in the intervals I:

-M < C : 0 and I: 0 < C < + c most of the contribution comes about

from the values of g corresponding to the highest C inside the inter-

val. For a first iteration let us therefore assume for u the following

step function: Inside I, u uD; Inside II, u = 1. Simple integration

of Eq. (3) yields

1
UD f (5)

1 +DTD7

Assuming that Td - T0 and w = 0.75 the calculations show that for M - 0,

1, 2, 3, 4, 5, 7, 10, 15, 20, the corresponding values of uD are:

0.570, 0.573, 0.581, 0.590, 0.598, 0.605, 0.619, 0.634, 0.652, 0.664.

For M - 0 and 5 Chapman (3) gives, through an exact numerical solution,

uD - 0.587 and 0.597. Comparison shows that our closed form approxima-

tion is in error of less than -3% and +1.57. correspondingly.
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Experiments show (4 ) that uD is a function of Reynolds number. The

analysis of Ref. 2, in which the influence of an initial finite bound-

ary layer thickness was studied, through the parameter s - S/sb,

yields results which are independent of the base radius r . (This oc-
0

curs because as it can be seen from Fig. 1, r° = sb sin a s n sin L

One might conjecture that one way to introduce the Reynolds number

would be to assume that u = 0 not at C = -- but at C = Cn where C is

finite and positive. This assumption implies a finite radius in the

direction perpendicular to the main flow. Following the same method

used for the derivation of Eq. (5) we find:

Erf. (Xn) 
(6)

Erf. (Xn) +

where Xn = Cn/2 \fg/i and Erf. denotes the error function. Figure 2

shows the function uD(M, C) for three different Mach numbers.

These results are best interpreted in the physical plane s,y.

For simplicity assume M = 0 so that
(1 )

~V~= S u(7)
0

Let Cn correspond to Yn and s n where the subscript n indicates the

position of the "neck" of thickness h as shown in Fig. 1. To calcu-

late the integral in Eq. (7) we approximate u(C) in the interval

0 C < Cn by dropping the first term in Eq. (1). A simple integra-

tion yields:

u = UD l" f- (8)

Introducing the above into Eq. (7) we have:
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Fig. 2--The velocity at the dividing streamline for aifferent
boundary conditions inside the base region
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= 2 (9)

Assuming that all of the mass contained in the boundary layer over the

body goes through the neck, we set

h/ro = 407/rI (10)

The f-ctor 40 is fixed by the experiments of Ref. 3. Setting the posi-

tion of the neck X radii back of the base, Eq. (9) yields, after some

trigonometry:

Cn  = 20 u D/ o (11)

From this equation it appears that the value of uD is again directly

independent of the Reynolds number. Since the angle 0 is of the order

of 10 , so that cos ; 1, and since from experiments, X is of order

one, the assumption C n - w is still reasonable. The proof of this last

statement lles in the fact that Eq. (11) yields a value of C n = 12

when uD ; 0.6, X - 1 and cos 0- 1; then, Fig. 2 indicates that our

choice for uD is consistent with the fact that at Cn = 12 the asymp-

totic value for uD has been reached. In fact it is reached roughly

when C n > 3.0. One needs a neck length of the order of 10 radii in

order to make a correction in uD for finite base radius. However,

such values are not observed experimentally.
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